Search results
Results From The WOW.Com Content Network
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
In mathematics, a well-order (or well-ordering or well-order relation) on a set S is a total ordering on S with the property that every non-empty subset of S has a least element in this ordering. The set S together with the ordering is then called a well-ordered set.
In particular, the term well-defined is used with respect to (binary) operations on cosets. In this case, one can view the operation as a function of two variables, and the property of being well-defined is the same as that for a function. For example, addition on the integers modulo some n can be defined naturally in terms of integer addition.
Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .
Set is the prototype of a concrete category; other categories are concrete if they are "built on" Set in some well-defined way. Every two-element set serves as a subobject classifier in Set. The power object of a set A is given by its power set, and the exponential object of the sets A and B is given by the set of all functions from A to B. Set ...
In mathematics, a binary relation R is called well-founded (or wellfounded or foundational [1]) on a set or, more generally, a class X if every non-empty subset S ⊆ X has a minimal element with respect to R; that is, there exists an m ∈ S such that, for every s ∈ S, one does not have s R m.
In mathematics, the well-ordering theorem, also known as Zermelo's theorem, states that every set can be well-ordered. A set X is well-ordered by a strict total order if every non-empty subset of X has a least element under the ordering. The well-ordering theorem together with Zorn's lemma are the most important mathematical statements that are ...
The original definition of ordinal numbers, found for example in the Principia Mathematica, defines the order type of a well-ordering as the set of all well-orderings similar (order-isomorphic) to that well-ordering: in other words, an ordinal number is genuinely an equivalence class of well-ordered sets.