When.com Web Search

  1. Ad

    related to: sphere size calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]

  3. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  4. Equivalent spherical diameter - Wikipedia

    en.wikipedia.org/wiki/Equivalent_spherical_diameter

    Strictly speaking, the laser diffraction equivalent diameter is the diameter of a sphere yielding, on the same detector geometry, the same diffraction pattern as the particle. In the size regimen where the Fraunhofer approximation is valid, this diameter corresponds to the projected area diameter of the particle in random orientation. For ...

  5. Sphere packing - Wikipedia

    en.wikipedia.org/wiki/Sphere_packing

    Sphere packing finds practical application in the stacking of cannonballs. In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space.

  6. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    For example, assuming the Earth is a sphere of radius 6371 km, the surface area of the arctic (north of the Arctic Circle, at latitude 66.56° as of August 2016 [7]) is 2π ⋅ 6371 2 | sin 90° − sin 66.56° | = 21.04 million km 2 (8.12 million sq mi), or 0.5 ⋅ | sin 90° − sin 66.56° | = 4.125% of the total surface area of the Earth.

  7. Surface-area-to-volume ratio - Wikipedia

    en.wikipedia.org/wiki/Surface-area-to-volume_ratio

    Graphs of surface area, A against volume, V of the Platonic solids and a sphere, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. Their intercepts with the dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.

  8. Hill sphere - Wikipedia

    en.wikipedia.org/wiki/Hill_sphere

    The Hill sphere is a common model for the calculation of a gravitational sphere of influence. It is the most commonly used model to calculate the spatial extent of gravitational influence of an astronomical body ( m ) in which it dominates over the gravitational influence of other bodies, particularly a primary ( M ). [ 1 ]

  9. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.