Ad
related to: area of sphere with radius of 5 mm
Search results
Results From The WOW.Com Content Network
A sphere of radius r has area element = . This can be found from the volume element in spherical coordinates with r held constant. [9] A sphere of any radius centered at zero is an integral surface of the following differential form: + + =
A sphere of radius r has surface area 4πr 2.. The surface area (symbol A) of a solid object is a measure of the total area that the surface of the object occupies. [1] The mathematical definition of surface area in the presence of curved surfaces is considerably more involved than the definition of arc length of one-dimensional curves, or of the surface area for polyhedra (i.e., objects with ...
The formula for the surface area of a sphere was first obtained by Archimedes in his work On the Sphere and Cylinder. The formula is: [6] A = 4πr 2 (sphere), where r is the radius of the sphere. As with the formula for the area of a circle, any derivation of this formula inherently uses methods similar to calculus.
Cross-sectional area of a mechanical pencil lead (0.5-0.7 mm in diameter) [16] 10 −6: 1 square millimetre (mm 2) 1–2 mm 2: Area of a human fovea [17] 2 mm 2: Area of the head of a pin: 10 −5 30–50 mm 2: Area of a 6–8 mm hole punched in a piece of paper by a hole punch [18] 10 −4: 1 square centimetre (cm 2) 290 mm 2: Area of one side ...
Thus, the segment volume equals the sum of three volumes: two right circular cylinders one of radius a and the second of radius b (both of height /) and a sphere of radius /. The curved surface area of the spherical zone—which excludes the top and bottom bases—is given by =.
Lines, L. (1965), Solid geometry: With Chapters on Space-lattices, Sphere-packs and Crystals, Dover. Reprint of 1935 edition. A problem on page 101 describes the shape formed by a sphere with a cylinder removed as a "napkin ring" and asks for a proof that the volume is the same as that of a sphere with diameter equal to the length of the hole.
Strictly speaking, the laser diffraction equivalent diameter is the diameter of a sphere yielding, on the same detector geometry, the same diffraction pattern as the particle. In the size regimen where the Fraunhofer approximation is valid, this diameter corresponds to the projected area diameter of the particle in random orientation. For ...
The authalic radius is an surface area-equivalent radius for solid figures such as an ellipsoid. The osculating circle and osculating sphere define curvature -equivalent radii at a particular point of tangency for plane figures and solid figures, respectively.