When.com Web Search

  1. Ads

    related to: root calculator with steps

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Newton's method is a powerful technique—in general the convergence is quadratic: as the method converges on the root, the difference between the root and the approximation is squared (the number of accurate digits roughly doubles) at each step. However, there are some difficulties with the method.

  3. Polynomial root-finding algorithms - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding...

    For finding one root, Newton's method and other general iterative methods work generally well. For finding all the roots, arguably the most reliable method is the Francis QR algorithm computing the eigenvalues of the companion matrix corresponding to the polynomial, implemented as the standard method [1] in MATLAB.

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Root-finding algorithm - Wikipedia

    en.wikipedia.org/wiki/Root-finding_algorithm

    In numerical analysis, a root-finding algorithm is an algorithm for finding zeros, also called "roots", of continuous functions. A zero of a function f is a number x such that f ( x ) = 0 . As, generally, the zeros of a function cannot be computed exactly nor expressed in closed form , root-finding algorithms provide approximations to zeros.

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Bisection method - Wikipedia

    en.wikipedia.org/wiki/Bisection_method

    A few steps of the bisection method applied over the starting range [a 1;b 1].The bigger red dot is the root of the function. In mathematics, the bisection method is a root-finding method that applies to any continuous function for which one knows two values with opposite signs.

  8. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a recursive method that generates a new approximation of a root ξ of f at each iteration using the three prior iterations. Starting with three initial values x 0, x −1 and x −2, the first iteration calculates an approximation x 1 using those three, the second iteration calculates an approximation x 2 using x 1, x 0 and x −1, the third iteration calculates an ...

  9. Broyden's method - Wikipedia

    en.wikipedia.org/wiki/Broyden's_method

    In numerical analysis, Broyden's method is a quasi-Newton method for finding roots in k variables. It was originally described by C. G. Broyden in 1965. [1]Newton's method for solving f(x) = 0 uses the Jacobian matrix, J, at every iteration.