When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...

  4. Size (statistics) - Wikipedia

    en.wikipedia.org/wiki/Size_(statistics)

    This statistics -related article is a stub. You can help Wikipedia by expanding it.

  5. Cohen's h - Wikipedia

    en.wikipedia.org/wiki/Cohen's_h

    In statistics, Cohen's h, popularized by Jacob Cohen, is a measure of distance between two proportions or probabilities. Cohen's h has several related uses: It can be used to describe the difference between two proportions as "small", "medium", or "large". It can be used to determine if the difference between two proportions is "meaningful".

  6. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    The effective sample size, ... be able to trace back the decision and accurately calculate the exact inclusion probability. ... And two items from two different ...

  7. Power (statistics) - Wikipedia

    en.wikipedia.org/wiki/Power_(statistics)

    Illustration of the power of a statistical test, for a two sided test, through the probability distribution of the test statistic under the null and alternative hypothesis. α is shown as the blue area , the probability of rejection under null, while the red area shows power, 1 − β , the probability of correctly rejecting under the alternative.

  8. Statistical hypothesis test - Wikipedia

    en.wikipedia.org/wiki/Statistical_hypothesis_test

    Set up two statistical hypotheses, H1 and H2, and decide about α, β, and sample size before the experiment, based on subjective cost-benefit considerations. These define a rejection region for each hypothesis. 2 Report the exact level of significance (e.g. p = 0.051 or p = 0.049). Do not refer to "accepting" or "rejecting" hypotheses.

  9. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    where N is the population size, n is the sample size, m x is the mean of the x variate and s x 2 and s y 2 are the sample variances of the x and y variates respectively. These versions differ only in the factor in the denominator (N - 1). For a large N the difference is negligible.