When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Wall shear stress expresses the retarding force (per unit area) from a wall in the layers of a fluid flowing next to the wall. It is defined as: ...

  3. Law of the wall - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_wall

    The logarithmic law of the wall is a self similar solution for the mean velocity parallel to the wall, and is valid for flows at high Reynolds numbers — in an overlap region with approximately constant shear stress and far enough from the wall for (direct) viscous effects to be negligible: [3]

  4. Shear wall - Wikipedia

    en.wikipedia.org/wiki/Shear_wall

    A typical timber shear wall consists of braced panels in the wall line, constructed using structural plywood sheathing, specific nailing at the edges, and supporting framing. A shear wall is an element of a structurally engineered system that is designed to resist in- plane lateral forces, typically wind and seismic loads.

  5. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    For a Newtonian fluid wall, shear stress (τ w) can be related to shear rate by = ˙ where μ is the dynamic viscosity of the fluid. For non-Newtonian fluids, there are different constitutive laws depending on the fluid, which relates the stress tensor to the shear rate tensor.

  6. Shear velocity - Wikipedia

    en.wikipedia.org/wiki/Shear_velocity

    Shear velocity is linked to the Darcy friction factor by equating wall shear stress, giving: = where f D is the friction factor. [1] Shear velocity can also be defined in terms of the local velocity and shear stress fields (as opposed to whole-channel values, as given above).

  7. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    is the wall shear stress, is the suction/injection velocity at the wall, is the displacement thickness and is the momentum thickness. Kármán–Pohlhausen Approximation is derived from this equation.

  8. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    It is defined as the ratio between the local shear stress and the local flow kinetic energy density: [1] [2] = where f is the local Fanning friction factor (dimensionless); τ is the local shear stress (units of pascals (Pa) = kg/m 2, or pounds per square foot (psf) = lbm/ft 2);

  9. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    Assuming that the direction of the forces is known, the stress across M can be expressed simply by the single number , calculated simply with the magnitude of those forces, F and the cross sectional area, A. = Unlike normal stress, this simple shear stress is directed parallel to the cross-section considered, rather than perpendicular to it. [13]