When.com Web Search

  1. Ads

    related to: ionic size periodic table

Search results

  1. Results From The WOW.Com Content Network
  2. Ionic radius - Wikipedia

    en.wikipedia.org/wiki/Ionic_radius

    Nevertheless, ionic radius values are sufficiently transferable to allow periodic trends to be recognized. As with other types of atomic radius, ionic radii increase on descending a group. Ionic size (for the same ion) also increases with increasing coordination number, and an ion in a high-spin state will be larger than the same ion in a low ...

  3. Atomic radii of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Atomic_radii_of_the...

    Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease rightward along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the ...

  4. Periodic table - Wikipedia

    en.wikipedia.org/wiki/Periodic_table

    Periodic table of the chemical elements showing the most or more commonly named sets of elements (in periodic tables), and a traditional dividing line between metals and nonmetals. The f-block actually fits between groups 2 and 3 ; it is usually shown at the foot of the table to save horizontal space.

  5. Atomic radius - Wikipedia

    en.wikipedia.org/wiki/Atomic_radius

    Ionic radius: the nominal radius of the ions of an element in a specific ionization state, deduced from the spacing of atomic nuclei in crystalline salts that include that ion. In principle, the spacing between two adjacent oppositely charged ions (the length of the ionic bond between them) should equal the sum of their ionic radii. [13]

  6. Periodic trends - Wikipedia

    en.wikipedia.org/wiki/Periodic_trends

    The periodic trends in properties of elements. In chemistry, periodic trends are specific patterns present in the periodic table that illustrate different aspects of certain elements when grouped by period and/or group. They were discovered by the Russian chemist Dmitri Mendeleev in 1863.

  7. Ion - Wikipedia

    en.wikipedia.org/wiki/Ion

    The net charge of an ion is not zero because its total number of electrons is unequal to its total number of protons. A cation is a positively charged ion with fewer electrons than protons [2] (e.g. K + (potassium ion)) while an anion is a negatively charged ion with more electrons than protons. [3] (e.g. Cl-(chloride ion) and OH-(hydroxide

  8. Lanthanide contraction - Wikipedia

    en.wikipedia.org/wiki/Lanthanide_contraction

    The lanthanide contraction is the greater-than-expected decrease in atomic radii and ionic radii of the elements in the lanthanide series, from left to right. It is caused by the poor shielding effect of nuclear charge by the 4f electrons along with the expected periodic trend of increasing electronegativity and nuclear charge on moving from left to right.

  9. Silicon - Wikipedia

    en.wikipedia.org/wiki/Silicon

    Following periodic trends, its single-bond covalent radius of 117.6 pm is intermediate between those of carbon (77.2 pm) and germanium (122.3 pm). The hexacoordinate ionic radius of silicon may be considered to be 40 pm, although this must be taken as a purely notional figure given the lack of a simple Si 4+ cation in reality. [50]