When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sphere - Wikipedia

    en.wikipedia.org/wiki/Spheres

    They are a generalization of the concept of a straight line in the plane. For the sphere the geodesics are great circles. Many other surfaces share this property. Of all the solids having a given volume, the sphere is the one with the smallest surface area; of all solids having a given surface area, the sphere is the one having the greatest volume.

  3. Lie sphere geometry - Wikipedia

    en.wikipedia.org/wiki/Lie_sphere_geometry

    The key observation that leads to Lie sphere geometry is that theorems of Euclidean geometry in the plane (resp. in space) which only depend on the concepts of circles (resp. spheres) and their tangential contact have a more natural formulation in a more general context in which circles, lines and points (resp. spheres, planes and points) are treated on an equal footing.

  4. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    The sum of the angles of a spherical triangle is not equal to 180°. A sphere is a curved surface, but locally the laws of the flat (planar) Euclidean geometry are good approximations. In a small triangle on the face of the earth, the sum of the angles is only slightly more than 180 degrees. A sphere with a spherical triangle on it.

  5. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    When the intersection of a sphere and a plane is not empty or a single point, it is a circle. This can be seen as follows: Let S be a sphere with center O, P a plane which intersects S. Draw OE perpendicular to P and meeting P at E. Let A and B be any two different points in the intersection.

  6. Line–sphere intersection - Wikipedia

    en.wikipedia.org/wiki/Linesphere_intersection

    The three possible line-sphere intersections: 1. No intersection. 2. Point intersection. 3. Two point intersection. In analytic geometry, a line and a sphere can intersect in three ways:

  7. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    Begin with a sphere centered on the origin. Every line through the origin pierces the sphere in two opposite points called antipodes. Although there is no way to do so physically, it is possible (by considering a quotient space) to mathematically merge each antipode pair into a single point. The closed surface so produced is the real projective ...

  8. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    In analytic geometry, the intersection of a line and a plane in three-dimensional space can be the empty set, a point, or a line. It is the entire line if that line is embedded in the plane, and is the empty set if the line is parallel to the plane but outside it. Otherwise, the line cuts through the plane at a single point.

  9. Great circle - Wikipedia

    en.wikipedia.org/wiki/Great_circle

    The great circle g (green) lies in a plane through the sphere's center O (black). The perpendicular line a (purple) through the center is called the axis of g, and its two intersections with the sphere, P and P ' (red), are the poles of g. Any great circle s (blue) through the poles is secondary to g. A great circle divides the sphere in two ...