When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    Tafel plot for an anodic process . The Tafel equation is an equation in electrochemical kinetics relating the rate of an electrochemical reaction to the overpotential. [1] The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel.

  3. Exchange current density - Wikipedia

    en.wikipedia.org/wiki/Exchange_current_density

    In electrochemistry, exchange current density is a parameter used in the Tafel equation, Butler–Volmer equation and other electrochemical kinetics expressions. The Tafel equation describes the dependence of current for an electrolytic process to overpotential.

  4. Julius Tafel - Wikipedia

    en.wikipedia.org/wiki/Julius_Tafel

    Julius Tafel was born in the village of Choindez in Courrendlin, Switzerland on 2 June 1862. Tafel's father, Julius Tafel Sr. (1827-1893) studied chemistry in Tubingen and became a director of Von Roll’s iron and steel works located in Choindez in 1856, and then took a top management position in steel works located in Gerlafingen in 1863.

  5. Overpotential - Wikipedia

    en.wikipedia.org/wiki/Overpotential

    The overpotential increases with growing current density (or rate), as described by the Tafel equation. An electrochemical reaction is a combination of two half-cells and multiple elementary steps. Each step is associated with multiple forms of overpotential. The overall overpotential is the summation of many individual losses.

  6. Voltammetry - Wikipedia

    en.wikipedia.org/wiki/Voltammetry

    However, the Nernst equation is limited, as it is modeled without a time component and voltammetric experiments vary applied potential as a function of time. Other mathematical models, primarily the Butler-Volmer equation, the Tafel equation, and Fick's law address the time dependence.

  7. Heterogeneous water oxidation - Wikipedia

    en.wikipedia.org/wiki/Heterogeneous_Water_Oxidation

    Using the Tafel equation, one can obtain kinetic information about the kinetics of the electrode material such as the exchange current density and the Tafel slope. [6] OER is presumed to not take place on clean metal surfaces such as platinum, but instead an oxide surface is formed prior to oxygen evolution.

  8. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    The upper graph shows the current density as function of the overpotential η . The anodic and cathodic current densities are shown as j a and j c, respectively for α=α a =α c =0.5 and j 0 =1mAcm −2 (close to values for platinum and palladium).

  9. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as: