Search results
Results From The WOW.Com Content Network
The following example in first-order logic (=) is a sentence. This sentence means that for every y, there is an x such that =. This sentence is true for positive real numbers, false for real numbers, and true for complex numbers. However, the formula
In mathematics education, a number sentence is an equation or inequality expressed using numbers and mathematical symbols. The term is used in primary level mathematics teaching in the US, [ 1 ] Canada, UK, [ 2 ] Australia, New Zealand [ 3 ] and South Africa.
In the latter case, a (declarative) sentence is just one way of expressing an underlying statement. A statement is what a sentence means, it is the notion or idea that a sentence expresses, i.e., what it represents. For example, it could be said that "2 + 2 = 4" and "two plus two equals four" are two different sentences expressing the same ...
In mathematical logic, a term denotes a mathematical object while a formula denotes a mathematical fact. In particular, terms appear as components of a formula. This is analogous to natural language, where a noun phrase refers to an object and a whole sentence refers to a fact.
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
In mathematical logic, a ground term of a formal system is a term that does not contain any variables. Similarly, a ground formula is a formula that does not contain any variables. In first-order logic with identity with constant symbols a {\displaystyle a} and b {\displaystyle b} , the sentence Q ( a ) ∨ P ( b ) {\displaystyle Q(a)\lor P(b ...
In mathematical logic, a theory (also called a formal theory) is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element ϕ ∈ T {\displaystyle \phi \in T} of a deductively closed theory T {\displaystyle T} is then called a theorem of the theory.
X is an unbound variable, while a is a bound value (term). Unifying the two produces the substitution X ↦ a. Discarding the unified predicates, and applying this substitution to the remaining predicates (just Q(X), in this case), produces the conclusion: Q(a) For another example, consider the syllogistic form All Cretans are islanders.