Ad
related to: define sharply constant in statistics calculator
Search results
Results From The WOW.Com Content Network
Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).
Various measures of statistical dispersion satisfy these. In order to make the statistic a consistent estimator for the scale parameter, one must in general multiply the statistic by a constant scale factor. This scale factor is defined as the theoretical value of the value obtained by dividing the required scale parameter by the asymptotic ...
Use of the term in statistics derives from Sir Ronald Fisher in 1922. [2] Use of the terms consistency and consistent in statistics is restricted to cases where essentially the same procedure can be applied to any number of data items. In complicated applications of statistics, there may be several ways in which the number of data items may grow.
In statistics, a consistent estimator or asymptotically consistent estimator is an estimator—a rule for computing estimates of a parameter θ 0 —having the property that as the number of data points used increases indefinitely, the resulting sequence of estimates converges in probability to θ 0.
The term consistency in statistics usually refers to an estimator that is asymptotically consistent. Fisher consistency and asymptotic consistency are distinct concepts, although both aim to define a desirable property of an estimator. While many estimators are consistent in both senses, neither definition encompasses the other.
The theory of median-unbiased estimators was revived by George W. Brown in 1947: [8]. An estimate of a one-dimensional parameter θ will be said to be median-unbiased, if, for fixed θ, the median of the distribution of the estimate is at the value θ; i.e., the estimate underestimates just as often as it overestimates.
In statistics, sufficiency is a property of a statistic computed on a sample dataset in relation to a parametric model of the dataset. A sufficient statistic contains all of the information that the dataset provides about the model parameters.
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]