When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    In mathematical analysis, the Dirac delta function (or δ distribution), also known as the unit impulse, [1] is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. [2] [3] [4] Thus it can be represented heuristically as

  3. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  4. Duhamel's integral - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_integral

    If a system initially rests at its equilibrium position, from where it is acted upon by a unit-impulse at the instance t=0, i.e., p(t) in the equation above is a Dirac delta function δ(t), () = | = =, then by solving the differential equation one can get a fundamental solution (known as a unit-impulse response function)

  5. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    Unlike the Kronecker delta function and the unit sample function [], the Dirac delta function () does not have an integer index, it has a single continuous non-integer value t. To confuse matters more, the unit impulse function is sometimes used to refer to either the Dirac delta function δ ( t ) {\displaystyle \delta (t)} , or the unit sample ...

  6. Convolution - Wikipedia

    en.wikipedia.org/wiki/Convolution

    In electrical engineering, the convolution of one function (the input signal) with a second function (the impulse response) gives the output of a linear time-invariant system (LTI). At any given moment, the output is an accumulated effect of all the prior values of the input function, with the most recent values typically having the most ...

  7. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The space of such functions of a complex variable is called the Paley—Wiener space. This theorem has been generalised to semisimple Lie groups. [37] If f is supported on the half-line t ≥ 0, then f is said to be "causal" because the impulse response function of a physically realisable filter must have this property, as no effect can precede ...

  8. Thomae's function - Wikipedia

    en.wikipedia.org/wiki/Thomae's_function

    Thomae mentioned it as an example for an integrable function with infinitely many discontinuities in an early textbook on Riemann's notion of integration. [ 4 ] Since every rational number has a unique representation with coprime (also termed relatively prime) p ∈ Z {\displaystyle p\in \mathbb {Z} } and q ∈ N {\displaystyle q\in \mathbb {N ...

  9. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...