When.com Web Search

  1. Ads

    related to: p 0.001 statistics calculator free proportions

Search results

  1. Results From The WOW.Com Content Network
  2. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    Despite the fact that the likelihood ratio in favor of the alternative hypothesis over the null is close to 100, if the hypothesis was implausible, with a prior probability of a real effect being 0.1, even the observation of p = 0.001 would have a false positive rate of 8 percent. It wouldn't even reach the 5 percent level.

  3. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    Fisher also underlined the interpretation of p, as the long-run proportion of values at least as extreme as the data, assuming the null hypothesis is true. In later editions, Fisher explicitly contrasted the use of the p-value for statistical inference in science with the Neyman–Pearson method, which he terms "Acceptance Procedures". [48]

  4. Hosmer–Lemeshow test - Wikipedia

    en.wikipedia.org/wiki/Hosmer–Lemeshow_test

    The p-value is below alpha = 0.05, so the null hypothesis that the observed and expected proportions are the same across all doses is rejected. The way to compute this is to get a cumulative distribution function for a right-tail chi-square distribution with 8 degrees of freedom, i.e. cdf_chisq_rt(x,8), or 1 − cdf_chisq_lt(x, 8).

  5. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    To determine whether a result is statistically significant, a researcher calculates a p-value, which is the probability of observing an effect of the same magnitude or more extreme given that the null hypothesis is true. [5] [12] The null hypothesis is rejected if the p-value is less than (or equal to) a predetermined level, .

  6. Pearson's chi-squared test - Wikipedia

    en.wikipedia.org/wiki/Pearson's_chi-squared_test

    Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...

  7. False discovery rate - Wikipedia

    en.wikipedia.org/wiki/False_discovery_rate

    The p-values of the rejected null hypothesis (i.e. declared discoveries) are colored in red. Note that there are rejected p-values which are above the rejection line (in blue) since all null hypothesis of p-values which are ranked before the p-value of the last intersection are rejected. The approximations MFDR = 0.02625 and AFDR = 0.00730, here.

  8. McNemar's test - Wikipedia

    en.wikipedia.org/wiki/McNemar's_test

    The exact binomial test gives p = 0.053 and McNemar's test with continuity correction gives = 3.68 and p = 0.055. The asymptotic McNemar's test gives = 4.55 and p = 0.033 and the mid-P McNemar's test gives p = 0.035. Both the McNemar's test and mid-P version provide stronger evidence for a statistically significant treatment effect in this ...

  9. Effect size - Wikipedia

    en.wikipedia.org/wiki/Effect_size

    In statistics, an effect size is a value measuring the strength of the relationship between two variables in a population, or a sample-based estimate of that quantity. It can refer to the value of a statistic calculated from a sample of data, the value of one parameter for a hypothetical population, or to the equation that operationalizes how statistics or parameters lead to the effect size ...