When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Parallelogram of force - Wikipedia

    en.wikipedia.org/wiki/Parallelogram_of_force

    Suppose two forces act on a particle at the origin (the "tails" of the vectors) of Figure 1.Let the lengths of the vectors F 1 and F 2 represent the velocities the two forces could produce in the particle by acting for a given time, and let the direction of each represent the direction in which they act.

  3. Line of action - Wikipedia

    en.wikipedia.org/wiki/Line_of_action

    The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics , the line of action (also called line of application ) of a force ( F → ) is a geometric representation of how the force is applied.

  4. Screw theory - Wikipedia

    en.wikipedia.org/wiki/Screw_theory

    The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...

  5. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Judicious selection of a coordinate system can make defining the vectors simpler when writing the equations of motion or statics. The x direction may be chosen to point down the ramp in an inclined plane problem, for example. In that case the friction force only has an x component, and the normal force only has a y component.

  6. Log–log plot - Wikipedia

    en.wikipedia.org/wiki/Log–log_plot

    The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.

  7. Parallel curve - Wikipedia

    en.wikipedia.org/wiki/Parallel_curve

    A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalises the concept of parallel (straight) lines. It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1]

  8. Force lines - Wikipedia

    en.wikipedia.org/wiki/Force_lines

    The force lines are denser near the hole. The visualization helps to explain the stress concentration. Figure 2 shows the force lines in a body with a crack. The cracks are the most dangerous stress concentrator: the intensity of the force lines is high in the crack tip (see Fracture mechanics).

  9. Linear function (calculus) - Wikipedia

    en.wikipedia.org/wiki/Linear_function_(calculus)

    In calculus and related areas of mathematics, a linear function from the real numbers to the real numbers is a function whose graph (in Cartesian coordinates) is a non-vertical line in the plane. [1] The characteristic property of linear functions is that when the input variable is changed, the change in the output is proportional to the change ...