Search results
Results From The WOW.Com Content Network
Suppose two forces act on a particle at the origin (the "tails" of the vectors) of Figure 1.Let the lengths of the vectors F 1 and F 2 represent the velocities the two forces could produce in the particle by acting for a given time, and let the direction of each represent the direction in which they act.
A parallel of a curve is the envelope of a family of congruent circles centered on the curve. It generalises the concept of parallel (straight) lines. It can also be defined as a curve whose points are at a constant normal distance from a given curve. [1]
The line of action is shown as the vertical dotted line. It extends in both directions relative to the force vector, but is most useful where it defines the moment arm. In physics , the line of action (also called line of application ) of a force ( F → ) is a geometric representation of how the force is applied.
Using this form, vertical lines correspond to equations with b = 0. One can further suppose either c = 1 or c = 0, by dividing everything by c if it is not zero. There are many variant ways to write the equation of a line which can all be converted from one to another by algebraic manipulation. The above form is sometimes called the standard form.
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...
Parallel power is when power runs in parallel in a bond graph. An example of parallel power is shown below. Parallel power can be simplified, by recalling the relationship between effort and flow for 0 and 1-junctions. To solve parallel power you will first want to write down all of the equations for the junctions.
The above procedure now is reversed to find the form of the function F(x) using its (assumed) known log–log plot. To find the function F, pick some fixed point (x 0, F 0), where F 0 is shorthand for F(x 0), somewhere on the straight line in the above graph, and further some other arbitrary point (x 1, F 1) on the same graph.
The result is a set of non-linear equations that define the configuration parameters of the system for a set of values for the input parameters. Freudenstein introduced a method to use these equations for the design of a planar four-bar linkage to achieve a specified relation between the input parameters and the configuration of the linkage.