When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    Consecutive interior angles are the two pairs of angles that: [4] [2] have distinct vertex points, lie on the same side of the transversal and; are both interior. Two lines are parallel if and only if the two angles of any pair of consecutive interior angles of any transversal are supplementary (sum to 180°).

  3. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry.

  4. Internal and external angles - Wikipedia

    en.wikipedia.org/wiki/Internal_and_external_angles

    The interior angle concept can be extended in a consistent way to crossed polygons such as star polygons by using the concept of directed angles.In general, the interior angle sum in degrees of any closed polygon, including crossed (self-intersecting) ones, is then given by 180(n–2k)°, where n is the number of vertices, and the strictly positive integer k is the number of total (360 ...

  5. Cyclic quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Cyclic_quadrilateral

    In spherical geometry, a spherical quadrilateral formed from four intersecting greater circles is cyclic if and only if the summations of the opposite angles are equal, i.e., α + γ = β + δ for consecutive angles α, β, γ, δ of the quadrilateral. [30] One direction of this theorem was proved by Anders Johan Lexell in 1782. [31]

  6. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  7. Equilateral polygon - Wikipedia

    en.wikipedia.org/wiki/Equilateral_polygon

    A convex equilateral pentagon can be described by two consecutive angles, which together determine the other angles. However, equilateral pentagons, and equilateral polygons with more than five sides, can also be concave, and if concave pentagons are allowed then two angles are no longer sufficient to determine the shape of the pentagon.

  8. Congruence (geometry) - Wikipedia

    en.wikipedia.org/wiki/Congruence_(geometry)

    AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°.

  9. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    A simple proof of this follows from the crossing number inequality: [15] if cells have a total of + edges, one can form a graph with nodes (one per cell) and edges (one per pair of consecutive cells on the same line). The edges of this graph can be drawn as curves that do not cross within the cells corresponding to their endpoints, and then ...