When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. RV coefficient - Wikipedia

    en.wikipedia.org/wiki/RV_coefficient

    Note that standard usage is to have matrices for the variances and covariances of vector random variables. Given these innovative definitions, the RV-coefficient is then just the correlation coefficient defined in the usual way. Suppose that X and Y are matrices of centered random vectors (column vectors) with covariance matrix given by

  3. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  4. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  5. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Julia, the CovarianceMatrices.jl package [11] supports several types of heteroskedasticity and autocorrelation consistent covariance matrix estimation including Newey–West, White, and Arellano. In R , the packages sandwich [ 6 ] and plm [ 12 ] include a function for the Newey–West estimator.

  6. Template:Correlation and covariance - Wikipedia

    en.wikipedia.org/wiki/Template:Correlation_and...

    Template: Correlation and covariance. ... Download QR code; Print/export Download as PDF; Printable version; In other projects

  7. Canonical correlation - Wikipedia

    en.wikipedia.org/wiki/Canonical_correlation

    In statistics, canonical-correlation analysis (CCA), also called canonical variates analysis, is a way of inferring information from cross-covariance matrices.If we have two vectors X = (X 1, ..., X n) and Y = (Y 1, ..., Y m) of random variables, and there are correlations among the variables, then canonical-correlation analysis will find linear combinations of X and Y that have a maximum ...

  8. Category:Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Category:Covariance_and...

    Correlation does not imply causation; Correlation function; Cross-correlation matrix; Correlation function (astronomy) Correlation function (quantum field theory) Correlation function (statistical mechanics) Correlation ratio; Coskewness; Covariance; Covariance function; Covariance matrix; Covariance operator; Cramér's V; Cross-correlation ...

  9. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...