Search results
Results From The WOW.Com Content Network
in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits of the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.
in a removable discontinuity, the distance that the value of the function is off by is the oscillation; in a jump discontinuity, the size of the jump is the oscillation (assuming that the value at the point lies between these limits from the two sides); in an essential discontinuity, oscillation measures the failure of a limit to exist.
The ossicular chain is a crucial structure in the middle ear, responsible for transmitting sound vibrations from the tympanic membrane to the inner ear. This chain consists of three tiny bones: the malleus, incus, and stapes. They are connected by ligaments and joints that allow for the efficient conduction of sound waves. [1]
In magnetohydrodynamics (MHD), shocks and discontinuities are transition layers where properties of a plasma change from one equilibrium state to another. The relation between the plasma properties on both sides of a shock or a discontinuity can be obtained from the conservative form of the MHD equations, assuming conservation of mass, momentum, energy and of .
A discontinuity may exist as a single feature (e.g. fault, isolated joint or fracture) and in some circumstances, a discontinuity is treated as a single discontinuity although it belongs to a discontinuity set, in particular if the spacing is very wide compared to the size of the engineering application or to the size of the geotechnical unit.
Otosclerosis increases the stiffness of the middle-ear system, raising its resonant frequency. This can be quantified using multi-frequency tympanometry. Thus, a high resonant-frequency pathology such as otosclerosis can be differentiated from low resonant-frequency pathologies such as ossicular discontinuity. [citation needed]
Let be a real-valued monotone function defined on an interval. Then the set of discontinuities of the first kind is at most countable.. One can prove [5] [3] that all points of discontinuity of a monotone real-valued function defined on an interval are jump discontinuities and hence, by our definition, of the first kind.
This discontinuity, however, is only apparent; it is an artifact of the coordinate system chosen, which is singular at the poles. A different coordinate system would eliminate the apparent discontinuity (e.g., by replacing the latitude/longitude representation with an n-vector representation).