Search results
Results From The WOW.Com Content Network
The main difference between the luminous efficacy of radiation and the luminous efficacy of a source is that the latter accounts for input energy that is lost as heat or otherwise exits the source as something other than electromagnetic radiation. Luminous efficacy of radiation is a property of the radiation emitted by a source. Luminous ...
A germicidal lamp uses a low-pressure mercury-vapor glow discharge identical to that in a fluorescent lamp, but the uncoated fused quartz envelope allows ultraviolet radiation to transmit. Fluorescent lamp tubes are often straight and range in length from about 100 millimeters (3.9 in) for miniature lamps, to 2.43 meters (8.0 ft) for high ...
The luminous efficacy of a typical CFL is 50–70 lumens per watt (lm/W) and that of a typical incandescent lamp is 10–17 lm/W. [38] Compared to a theoretical 100%-efficient lamp ( 680 lm/W ), CFL lamps have lighting efficiency ranges of 7–10%, [ 39 ] versus 1.5–2.5% [ 40 ] for incandescents.
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...
Luminous efficacy is measured in lumens per watt (lm/W). The luminous efficiency of a source is defined as the ratio of its luminous efficacy to the maximum possible luminous efficacy, which is 683 lm/W. [ 80 ] [ 81 ] An ideal white light source could produce about 250 lumens per watt, corresponding to a luminous efficiency of 37%.
Luminous efficacy (of radiation) K: lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to radiant flux: Luminous efficacy (of a source) η [nb 3] lumen per watt: lm/W: M −1 ⋅L −2 ⋅T 3 ⋅J: Ratio of luminous flux to power consumption Luminous efficiency, luminous coefficient V: 1: Luminous efficacy normalized by ...