When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_inverse

    For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the ...

  3. Root of unity - Wikipedia

    en.wikipedia.org/wiki/Root_of_unity

    The product and the multiplicative inverse of two roots of unity are also roots of unity. In fact, if x m = 1 and y n = 1, then (x −1) m = 1, and (xy) k = 1, where k is the least common multiple of m and n. Therefore, the roots of unity form an abelian group under multiplication. This group is the torsion subgroup of the circle group.

  4. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    The inverse or multiplicative inverse (for avoiding confusion with additive inverses) of a unit x is denoted , or, when the multiplication is commutative, . The additive identity 0 is never a unit, except when the ring is the zero ring, which has 0 as its unique element.

  5. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  6. Complex number - Wikipedia

    en.wikipedia.org/wiki/Complex_number

    Addition, subtraction and multiplication of complex numbers can be naturally defined by using the rule = along with the associative, commutative, and distributive laws. Every nonzero complex number has a multiplicative inverse. This makes the complex numbers a field with the real numbers as a subfield.

  7. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions are analytic and hence invertible by means of Newton's method. In particular, if either exp {\displaystyle \exp } or log {\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is ...

  8. Modular multiplicative inverse - Wikipedia

    en.wikipedia.org/wiki/Modular_multiplicative_inverse

    A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.

  9. Dirichlet convolution - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_convolution

    The Dirichlet convolution of two multiplicative functions is again multiplicative, and every not constantly zero multiplicative function has a Dirichlet inverse which is also multiplicative. In other words, multiplicative functions form a subgroup of the group of invertible elements of the Dirichlet ring.