Search results
Results From The WOW.Com Content Network
In physics (specifically electromagnetism), Gauss's law, also known as Gauss's flux theorem (or sometimes Gauss's theorem), is one of Maxwell's equations. It is an application of the divergence theorem , and it relates the distribution of electric charge to the resulting electric field .
This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).
The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
The two equations for the EMF are, firstly, the work per unit charge done against the Lorentz force in moving a test charge around the (possibly moving) surface boundary ∂Σ and, secondly, as the change of magnetic flux through the open surface Σ. This equation is the principle behind an electrical generator.
That equation is another way of writing the two inhomogeneous Maxwell's equations (namely, Gauss's law and Ampère's circuital law) using the substitutions: = = where i, j, k take the values 1, 2, and 3.
For example, since the magnetic field is divergence-free (Gauss's law for magnetism; i.e., =), always exists that satisfies the above definition. The vector potential A {\displaystyle \mathbf {A} } is used when studying the Lagrangian in classical mechanics and in quantum mechanics (see Schrödinger equation for charged particles , Dirac ...