Search results
Results From The WOW.Com Content Network
Breaking a polygon into monotone polygons. A simple polygon may be easily cut into monotone polygons in O(n log n) time. However, since a triangle is a monotone polygon, polygon triangulation is in fact cutting a polygon into monotone ones, and it may be performed for simple polygons in O(n) time with a complex algorithm. [6]
A polygonal chain is called monotone if there is a straight line L such that every line perpendicular to L intersects the chain at most once. Every nontrivial monotone polygonal chain is open. In comparison, a monotone polygon is a polygon (a closed chain) that can be partitioned into exactly two monotone chains. [2]
The polygonal wraps, weakly simple polygons that use each given point one or more times as a vertex, include all polygonalizations and are connected by local moves. [2] Another more general class of polygons, the surrounding polygons, are simple polygons that have some of the given points as vertices and enclose all of the points. They are ...
A monotone planar subdivision with some monotone chains highlighted. A (vertical) monotone chain is a path such that the y-coordinate never increases along the path. A simple polygon is (vertical) monotone if it is formed by two monotone chains, with the first and last vertices in common. It is possible to add some edges to a planar subdivision ...
A simple polygon is monotone with respect to a line L, if any line orthogonal to L intersects the polygon at most twice. A monotone polygon can be split into two monotone chains. A polygon that is monotone with respect to the y-axis is called y-monotone. A monotone polygon with n vertices can be triangulated in O(n) time. Assuming a given ...
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.
In decision problem versions of the art gallery problem, one is given as input both a polygon and a number k, and must determine whether the polygon can be guarded with k or fewer guards. This problem is ∃ R {\displaystyle \exists \mathbb {R} } -complete , as is the version where the guards are restricted to the edges of the polygon. [ 10 ]
In geometry, a generalized polygon can be called a polygram, and named specifically by its number of sides. All polygons are polygrams, but they can also include disconnected sets of edges, called a compound polygon. For example, a regular pentagram, {5/2}, has 5 sides, and the regular hexagram, {6/2} or 2{3}, has 6 sides divided into two triangles