When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Happy ending problem - Wikipedia

    en.wikipedia.org/wiki/Happy_ending_problem

    In mathematics, the "happy ending problem" (so named by Paul ErdÅ‘s because it led to the marriage of George Szekeres and Esther Klein [1]) is the following statement: Theorem — any set of five points in the plane in general position [ 2 ] has a subset of four points that form the vertices of a convex quadrilateral .

  3. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    A quadrilateral such as BCEF is called an adventitious quadrangle when the angles between its diagonals and sides are all rational angles, angles that give rational numbers when measured in degrees or other units for which the whole circle is a rational number. Numerous adventitious quadrangles beyond the one appearing in Langley's puzzle have ...

  4. Doubling the cube - Wikipedia

    en.wikipedia.org/wiki/Doubling_the_cube

    According to Plutarch, Plato gave the problem to Eudoxus and Archytas and Menaechmus, who solved the problem using mechanical means, earning a rebuke from Plato for not solving the problem using pure geometry. [8] This may be why the problem is referred to in the 350s BC by the author of the pseudo-Platonic Sisyphus (388e) as still unsolved. [9 ...

  5. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent paradox is explained by the fact that the side of the new large square is a little smaller than the original one. If θ is the angle between two opposing sides in each quadrilateral, then the ratio of the two areas is given by sec 2 θ. For θ = 5°, this is approximately 1.00765, which corresponds to a difference of about 0.8%.

  6. Carpenter's rule problem - Wikipedia

    en.wikipedia.org/wiki/Carpenter's_rule_problem

    The carpenter's rule problem is a discrete geometry problem, which can be stated in the following manner: Can a simple planar polygon be moved continuously to a position where all its vertices are in convex position, so that the edge lengths and simplicity are preserved along the way?

  7. Seven Bridges of Königsberg - Wikipedia

    en.wikipedia.org/wiki/Seven_Bridges_of_Königsberg

    Euler's work was presented to the St. Petersburg Academy on 26 August 1735, and published as Solutio problematis ad geometriam situs pertinentis (The solution of a problem relating to the geometry of position) in the journal Commentarii academiae scientiarum Petropolitanae in 1741. [3]

  8. Millennium Prize Problems - Wikipedia

    en.wikipedia.org/wiki/Millennium_Prize_Problems

    The Clay Mathematics Institute officially designated the title Millennium Problem for the seven unsolved mathematical problems, the Birch and Swinnerton-Dyer conjecture, Hodge conjecture, Navier–Stokes existence and smoothness, P versus NP problem, Riemann hypothesis, Yang–Mills existence and mass gap, and the Poincaré conjecture at the ...

  9. Alhazen's problem - Wikipedia

    en.wikipedia.org/wiki/Alhazen's_problem

    Alhazen's problem, also known as Alhazen's billiard problem, is a mathematical problem in geometrical optics first formulated by Ptolemy in 150 AD. [1] It is named for the 11th-century Arab mathematician Alhazen ( Ibn al-Haytham ) who presented a geometric solution in his Book of Optics .