Search results
Results From The WOW.Com Content Network
MDL applies in machine learning when algorithms (machines) generate descriptions. Learning occurs when an algorithm generates a shorter description of the same data set. The theoretic minimum description length of a data set, called its Kolmogorov complexity, cannot, however, be computed.
The Scattering transfer parameters or T-parameters of a 2-port network are expressed by the T-parameter matrix and are closely related to the corresponding S-parameter matrix. However, unlike S parameters, there is no simple physical means to measure the T parameters in a system, sometimes referred to as Youla waves.
In machine learning, hyperparameter optimization [1] or tuning is the problem of choosing a set of optimal hyperparameters for a learning algorithm. A hyperparameter is a parameter whose value is used to control the learning process, which must be configured before the process starts. [2] [3]
In machine learning, a hyperparameter is a parameter that can be set in order to define any configurable part of a model's learning process. Hyperparameters can be classified as either model hyperparameters (such as the topology and size of a neural network) or algorithm hyperparameters (such as the learning rate and the batch size of an optimizer).
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]
Double descent in statistics and machine learning is the phenomenon where a model with a small number of parameters and a model with an extremely large number of parameters both have a small training error, but a model whose number of parameters is about the same as the number of data points used to train the model will have a much greater test ...
Sometimes models are intimately associated with a particular learning rule. A common use of the phrase "ANN model" is really the definition of a class of such functions (where members of the class are obtained by varying parameters, connection weights, or specifics of the architecture such as the number of neurons, number of layers or their ...
In the statistical learning theory framework, an algorithm is a strategy for choosing a function: given a training set = {(,), …, (,)} of inputs and their labels (the labels are usually ). Regularization strategies avoid overfitting by choosing a function that fits the data, but is not too complex.