Search results
Results From The WOW.Com Content Network
Substituting into the Clapeyron equation =, we can obtain the Clausius–Clapeyron equation [8]: 509 = for low temperatures and pressures, [8]: 509 where is the specific latent heat of the substance. Instead of the specific, corresponding molar values (i.e. L {\\displaystyle L} in kJ/mol and R = 8.31 J/(mol⋅K)) may also be used.
The Antoine equation is a class of semi-empirical correlations describing the relation between vapor pressure and temperature for pure substances. The Antoine equation is derived from the Clausius–Clapeyron relation. The equation was presented in 1888 by the French engineer Louis Charles Antoine (1825–1897). [1]
It goes on to say, however, that the exact equation is called the Clausius-Clapeyron equation in most texts for engineering thermodynamics and physics. (On the previous page, discussing the exact equation, the book said the exact version was called the Clapeyron equation, but said that it was also known as the Clausius-Clapeyron equation.)
For serious computation, Lowe (1977) [4] developed two pairs of equations for temperatures above and below freezing, with different levels of accuracy. They are all very accurate (compared to Clausius-Clapeyron and the Goff-Gratch) but use nested polynomials for very efficient computation.
The extent of boiling-point elevation can be calculated by applying Clausius–Clapeyron relation and Raoult's law together with the assumption of the non-volatility of the solute. The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass ...
The vapor pressure of any substance increases non-linearly with temperature, often described by the Clausius–Clapeyron relation. The atmospheric pressure boiling point of a liquid (also known as the normal boiling point ) is the temperature at which the vapor pressure equals the ambient atmospheric pressure.
These foundations enabled him to make substantive extensions of Clausius' work, including the formula, now known as the Clausius–Clapeyron relation, which characterises the phase transition between two phases of matter. He further considered questions of phase transitions in what later became known as Stefan problems.
Pages in category "Thermodynamic equations" The following 31 pages are in this category, out of 31 total. ... Clausius–Clapeyron relation; Compressibility equation; D.