When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Binomial distribution - Wikipedia

    en.wikipedia.org/wiki/Binomial_distribution

    Binomial probability mass function and normal probability density function approximation for n = 6 and p = 0.5. If n is large enough, then the skew of the distribution is not too great. In this case a reasonable approximation to B(n, p) is given by the normal distribution (, ()),

  3. Binomial proportion confidence interval - Wikipedia

    en.wikipedia.org/wiki/Binomial_proportion...

    The probability density function (PDF) for the Wilson score interval, plus PDF s at interval bounds. Tail areas are equal. Since the interval is derived by solving from the normal approximation to the binomial, the Wilson score interval ( , + ) has the property of being guaranteed to obtain the same result as the equivalent z-test or chi-squared test.

  4. Q-function - Wikipedia

    en.wikipedia.org/wiki/Q-function

    In statistics, the Q-function is the tail distribution function of the standard normal distribution. [1] [2] In other words, () is the probability that a normal (Gaussian) random variable will obtain a value larger than standard deviations.

  5. Binomial test - Wikipedia

    en.wikipedia.org/wiki/Binomial_test

    In order to consider both the biases, we use a two-tailed test. Note that to do this we cannot simply double the one-tailed p-value unless the probability of the event is 1/2. This is because the binomial distribution becomes asymmetric as that probability deviates from 1/2. There are two methods to define the two-tailed p-value.

  6. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    In probability theory and statistics, a normal distribution or Gaussian distribution is a type of continuous probability distribution for a real-valued random variable. The general form of its probability density function is [ 2 ] [ 3 ] f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 . {\displaystyle f(x)={\frac {1}{\sqrt {2\pi \sigma ^{2 ...

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.

  8. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Z tables use at least three different conventions: Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549.

  9. Error function - Wikipedia

    en.wikipedia.org/wiki/Error_function

    Another approximation is given by Sergei Winitzki using his "global Padé approximations": ... which is the tail probability of the standard normal distribution.