When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Dormand–Prince method - Wikipedia

    en.wikipedia.org/wiki/Dormand–Prince_method

    Dormand–Prince is the default method in the ode45 solver for MATLAB [4] and GNU Octave [5] and is the default choice for the Simulink's model explorer solver. It is an option in Python's SciPy ODE integration library [6] and in Julia's ODE solvers library. [7]

  3. One-step method - Wikipedia

    en.wikipedia.org/wiki/One-step_method

    The Matlab function ode45 implements a one-step method that uses two embedded explicit Runge-Kutta methods with convergence orders 4 and 5 for step size control. [29] The solution can now be plotted, as a blue curve and as a red curve; the calculated points are marked by small circles:

  4. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is implemented in the ode3 for fixed step solver and ode23 for a variable step solver function in MATLAB (Shampine & Reichelt 1997). Low-order methods are more suitable than higher-order methods like the Dormand–Prince method of order five, if only a crude approximation to the solution is required. Bogacki and ...

  5. List of nonlinear ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_ordinary...

    Important in complex analysis and geometric function theory [15] Logistic differential equation (sometimes known as the Verhulst model) 2 = (()) Special case of the Bernoulli differential equation; many applications including in population dynamics [16] Lorenz attractor: 1

  6. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/Runge–Kutta–Fehlberg...

    The solution is the weighted average of six increments, where each increment is the product of the size of the interval, , and an estimated slope specified by function f on the right-hand side of the differential equation.

  7. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    where is a function : [,), and the initial condition is a given vector. First-order means that only the first derivative of y appears in the equation, and higher derivatives are absent. Without loss of generality to higher-order systems, we restrict ourselves to first-order differential equations, because a higher-order ODE can be converted ...

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The potential-energy function of a harmonic oscillator is =. Given an arbitrary potential-energy function V ( x ) {\displaystyle V(x)} , one can do a Taylor expansion in terms of x {\displaystyle x} around an energy minimum ( x = x 0 {\displaystyle x=x_{0}} ) to model the behavior of small perturbations from equilibrium.

  9. Van der Pol oscillator - Wikipedia

    en.wikipedia.org/wiki/Van_der_Pol_oscillator

    The Van der Pol oscillator was originally proposed by the Dutch electrical engineer and physicist Balthasar van der Pol while he was working at Philips. [2] Van der Pol found stable oscillations, [3] which he subsequently called relaxation-oscillations [4] and are now known as a type of limit cycle, in electrical circuits employing vacuum tubes.