Search results
Results From The WOW.Com Content Network
The SI unit of mass attenuation coefficient is the square metre per kilogram (m 2 /kg). Other common units include cm 2 /g (the most common unit for X-ray mass attenuation coefficients) and L⋅g −1 ⋅cm −1 (sometimes used in solution chemistry). Mass extinction coefficient is an old term for this quantity. [1]
Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0 N D = Number of atoms decayed at time t = + dimensionless dimensionless Decay rate, activity of a radioisotope: A = Bq = Hz = s −1 [T] −1: Decay constant: λ = /
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
In nuclear physics, the concept of a neutron cross section is used to express the likelihood of interaction between an incident neutron and a target nucleus. The neutron cross section σ can be defined as the area in cm 2 for which the number of neutron-nuclei reactions taking place is equal to the product of the number of incident neutrons that would pass through the area and the number of ...
[a] Thus, the neutron has a charge of 0 (zero), and therefore is electrically neutral; indeed, the term "neutron" comes from the fact that a neutron is electrically neutral. The masses of the proton and neutron are similar: for the proton it is 1.6726 × 10 −27 kg (938.27 MeV/c 2), while for the neutron it is 1.6749 × 10 −27 kg (939.57 MeV ...
The number of neutrons produced per fission is multiplicatively modified by the dominant eigenvalue. The resulting value of this eigenvalue reflects the time dependence of the neutron density in a multiplying medium. k eff < 1, subcritical: the neutron density is decreasing as time passes; k eff = 1, critical: the neutron density remains ...
The absorption coefficient is fundamentally the product of a quantity of absorbers per unit volume, [cm −3], times an efficiency of absorption (area/absorber, [cm 2]). Several sources [ 2 ] [ 12 ] [ 3 ] replace nσ λ with k λ r , where k λ is the absorption coefficient per unit density and r is the density of the gas.