Search results
Results From The WOW.Com Content Network
A map is a function, as in the association of any of the four colored shapes in X to its color in Y In mathematics , a map or mapping is a function in its general sense. [ 1 ] These terms may have originated as from the process of making a geographical map : mapping the Earth surface to a sheet of paper.
Some authors, such as Serge Lang, [13] use "function" only to refer to maps for which the codomain is a subset of the real or complex numbers, and use the term mapping for more general functions. In the theory of dynamical systems, a map denotes an evolution function used to create discrete dynamical systems. See also Poincaré map. Whichever ...
Given a function :: The function is injective, or one-to-one, if each element of the codomain is mapped to by at most one element of the domain, or equivalently, if distinct elements of the domain map to distinct elements in the codomain. An injective function is also called an injection. [1] Notationally:
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping between two vector spaces that preserves the operations of vector addition and scalar multiplication.
A contraction mapping has at most one fixed point. Moreover, the Banach fixed-point theorem states that every contraction mapping on a non-empty complete metric space has a unique fixed point, and that for any x in M the iterated function sequence x, f (x), f (f (x)), f (f (f (x))), ... converges to the fixed point
By definition, the map : is a relatively closed map if and only if the surjection: is a strongly closed map. If in the open set definition of "continuous map" (which is the statement: "every preimage of an open set is open"), both instances of the word "open" are replaced with "closed" then the statement of results ("every preimage of a ...
The open mapping theorem forces the inverse function (defined on the image of ) to be holomorphic. Thus, under this definition, a map is conformal if and only if it is biholomorphic. The two definitions for conformal maps are not equivalent. Being one-to-one and holomorphic implies having a non-zero derivative.
Similarly, the inverse image (or preimage) of a given subset of the codomain is the set of all elements of that map to a member of . The image of the function is the set of all output values it may produce, that is, the image of .