When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pairwise summation - Wikipedia

    en.wikipedia.org/wiki/Pairwise_summation

    Pairwise summation is the default summation algorithm in NumPy [9] and the Julia technical-computing language, [10] where in both cases it was found to have comparable speed to naive summation (thanks to the use of a large base case).

  3. Stable roommates problem - Wikipedia

    en.wikipedia.org/wiki/Stable_roommates_problem

    To find it, start at such a p 0 containing at least two individuals in their reduced list, and define recursively q i+1 to be the second on p i 's list and p i+1 to be the last on q i+1 's list, until this sequence repeats some p j, at which point a rotation is found: it is the sequence of pairs starting at the first occurrence of (p j, q j ...

  4. Partition problem - Wikipedia

    en.wikipedia.org/wiki/Partition_problem

    Given such an instance, construct an instance of Partition in which the input set contains the original set plus two elements: z 1 and z 2, with z 1 = sum(S) and z 2 = 2T. The sum of this input set is sum(S) + z 1 + z 2 = 2 sum(S) + 2T, so the target sum for Partition is sum(S) + T. Suppose there exists a solution S′ to the SubsetSum instance

  5. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Conversely, given a solution to the SubsetSumZero instance, it must contain the −T (since all integers in S are positive), so to get a sum of zero, it must also contain a subset of S with a sum of +T, which is a solution of the SubsetSumPositive instance. The input integers are positive, and T = sum(S)/2.

  6. Boyer–Moore majority vote algorithm - Wikipedia

    en.wikipedia.org/wiki/Boyer–Moore_majority_vote...

    After processing n input elements, the input sequence can be partitioned into (n−c) / 2 pairs of unequal elements, and c copies of m left over. This is a proof by induction; it is trivially true when n = c = 0, and is maintained every time an element x is added: If x = m, add it to the set of c copies of m (and increment c).

  7. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  8. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: =. In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems. [2]

  9. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.