Search results
Results From The WOW.Com Content Network
The two amplitude-modulated sinusoids are known as the in-phase (I) and quadrature (Q) components, which describes their relationships with the amplitude- and phase-modulated carrier. [ A ] [ 2 ] Or in other words, it is possible to create an arbitrarily phase-shifted sine wave, by mixing together two sine waves that are 90° out of phase in ...
Quadrature amplitude modulation (QAM) can be considered a subset of APSK because all QAM schemes modulate both the amplitude and phase of the carrier. Conventionally, QAM constellations are rectangular and APSK constellations are circular, however this is not always the case.
Optical phase diagram of a coherent state's distribution across phase space. In quantum optics, an optical phase space is a phase space in which all quantum states of an optical system are described. Each point in the optical phase space corresponds to a unique state of an optical system.
A 'signal space diagram' is an ideal constellation diagram showing the correct position of the point representing each symbol. After passing through a communication channel, due to electronic noise or distortion added to the signal, the amplitude and phase received by the demodulator may differ from the correct value for the symbol. When ...
Once correctly aligned/recovered, the quadrature signals also successfully demodulate the signal. Costas loop carrier recovery may be used for any M-ary PSK modulation scheme. [ 5 ] One of the Costas Loop's inherent shortcomings is a 360/M degree phase ambiguity present on the demodulated output.
CDMA is often used with binary phase-shift keying (BPSK) in its simplest form, but can be combined with any modulation scheme like (in advanced cases) quadrature amplitude modulation (QAM) or orthogonal frequency-division multiplexing (OFDM), which typically makes it very robust and efficient (and equipping them with accurate ranging ...
In the classical implementation of a Costas loop, [4] a local voltage-controlled oscillator (VCO) provides quadrature outputs, one to each of two phase detectors, e.g., product detectors. The same phase of the input signal is also applied to both phase detectors, and the output of each phase detector is passed through a low-pass filter. The ...
An incremental encoder employs a quadrature encoder to generate its A and B output signals. The pulses emitted from the A and B outputs are quadrature-encoded, meaning that when the incremental encoder is moving at a constant velocity, the A and B waveforms are square waves and there is a 90 degree phase difference between A and B .