Ad
related to: what does continuous function mean in algebra
Search results
Results From The WOW.Com Content Network
the sinc-function becomes a continuous function on all real numbers. The term removable singularity is used in such cases when (re)defining values of a function to coincide with the appropriate limits make a function continuous at specific points. A more involved construction of continuous functions is the function composition.
A function of class is a function of smoothness at least k; that is, a function of class is a function that has a k th derivative that is continuous in its domain. A function of class or -function (pronounced C-infinity function) is an infinitely differentiable function, that is, a function that has derivatives of all orders (this implies that ...
A – adele ring or algebraic numbers. a.a.s. – asymptotically almost surely. AC – Axiom of Choice, [1] or set of absolutely continuous functions. a.c. – absolutely continuous.
A function is called locally Lipschitz continuous if for every x in X there exists a neighborhood U of x such that f restricted to U is Lipschitz continuous. Equivalently, if X is a locally compact metric space, then f is locally Lipschitz if and only if it is Lipschitz continuous on every compact subset of X .
Continuous functions are of utmost importance in mathematics, functions and applications. However, not all functions are continuous. If a function is not continuous at a limit point (also called "accumulation point" or "cluster point") of its domain, one says that it has a discontinuity there.
The sum and difference of two absolutely continuous functions are also absolutely continuous. If the two functions are defined on a bounded closed interval, then their product is also absolutely continuous. [4] If an absolutely continuous function is defined on a bounded closed interval and is nowhere zero then its reciprocal is absolutely ...
The converse does not hold, since the function :, is, as seen above, not uniformly continuous, but it is continuous and thus Cauchy continuous. In general, for functions defined on unbounded spaces like R {\displaystyle R} , uniform continuity is a rather strong condition.
If f and g are compactly supported continuous functions, then their convolution exists, and is also compactly supported and continuous (Hörmander 1983, Chapter 1). More generally, if either function (say f) is compactly supported and the other is locally integrable, then the convolution f∗g is well-defined and continuous.