When.com Web Search

  1. Ad

    related to: continuous example math

Search results

  1. Results From The WOW.Com Content Network
  2. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    In mathematics, a continuous function is a function such that a small variation of the argument induces a small variation of the value of the function. This implies there are no abrupt changes in value, known as discontinuities. More precisely, a function is continuous if arbitrarily small changes in its value can be assured by restricting to ...

  3. List of continuity-related mathematical topics - Wikipedia

    en.wikipedia.org/wiki/List_of_continuity-related...

    Continuous probability distribution: Sometimes this term is used to mean a probability distribution whose cumulative distribution function (c.d.f.) is (simply) continuous. Sometimes it has a less inclusive meaning: a distribution whose c.d.f. is absolutely continuous with respect to Lebesgue measure. This less inclusive sense is equivalent to ...

  4. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The converse does not hold, since the function :, is, as seen above, not uniformly continuous, but it is continuous and thus Cauchy continuous. In general, for functions defined on unbounded spaces like R {\displaystyle R} , uniform continuity is a rather strong condition.

  5. Continuity - Wikipedia

    en.wikipedia.org/wiki/Continuity

    Continuity (mathematics), the opposing concept to discreteness; common examples include Continuous probability distribution or random variable in probability and statistics; Continuous game, a generalization of games used in game theory; Law of continuity, a heuristic principle of Gottfried Leibniz; Continuous function, in particular:

  6. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    Every Lipschitz continuous map is uniformly continuous, and hence continuous. More generally, a set of functions with bounded Lipschitz constant forms an equicontinuous set. The Arzelà–Ascoli theorem implies that if { f n } is a uniformly bounded sequence of functions with bounded Lipschitz constant, then it has a convergent subsequence.

  7. Weierstrass function - Wikipedia

    en.wikipedia.org/wiki/Weierstrass_function

    In mathematics, the Weierstrass function, named after its discoverer, Karl Weierstrass, is an example of a real-valued function that is continuous everywhere but differentiable nowhere. It is also an example of a fractal curve.

  8. Intermediate value theorem - Wikipedia

    en.wikipedia.org/wiki/Intermediate_value_theorem

    Intermediate value theorem: Let be a continuous function defined on [,] and let be a number with () < < ().Then there exists some between and such that () =.. In mathematical analysis, the intermediate value theorem states that if is a continuous function whose domain contains the interval [a, b], then it takes on any given value between () and () at some point within the interval.

  9. Hölder condition - Wikipedia

    en.wikipedia.org/wiki/Hölder_condition

    A closed additive subgroup of an infinite dimensional Hilbert space H, connected by α –Hölder continuous arcs with α > 1/2, is a linear subspace. There are closed additive subgroups of H, not linear subspaces, connected by 1/2–Hölder continuous arcs. An example is the additive subgroup L 2 (R, Z) of the Hilbert space L 2 (R, R).