Search results
Results From The WOW.Com Content Network
Glucose transporters are a wide group of membrane proteins that facilitate the transport of glucose across the plasma membrane, a process known as facilitated diffusion. Because glucose is a vital source of energy for all life, these transporters are present in all phyla .
Method of glucose uptake differs throughout tissues depending on two factors; the metabolic needs of the tissue and availability of glucose.The two ways in which glucose uptake can take place are facilitated diffusion (a passive process) and secondary active transport (an active process which on the ion-gradient which is established through the hydrolysis of ATP, known as primary active ...
Glucose enters the beta cells and goes through glycolysis to form ATP that eventually causes depolarization of the beta cell membrane (as explained in Insulin secretion section of this article). The depolarization process causes voltage-controlled calcium channels (Ca2+) opening, allowing the calcium to flow into the cells.
When insulin binds to the receptors on the cell surface, vesicles containing the GLUT4 transporters come to the plasma membrane and fuse together by the process of endocytosis, thus enabling a facilitated diffusion of glucose into the cell. As soon as the glucose enters the cell, it is phosphorylated into glucose-6-phosphate in order to ...
Once glucose enters the cell, the first step is phosphorylation of glucose by a family of enzymes called hexokinases to form glucose 6-phosphate (G6P). This reaction consumes ATP, but it acts to keep the glucose concentration inside the cell low, promoting continuous transport of blood glucose into the cell through the plasma membrane transporters.
It is an integral membrane protein carrier with a hydrophilic interior, which allows it to bind to glucose. As GLUT 1 is a type of carrier protein, it will undergo a conformational change to allow glucose to enter the other side of the plasma membrane. [23] GLUT 1 is commonly found in the red blood cell membranes of mammals. [24]
At the cell surface, GLUT4 permits the facilitated diffusion of circulating glucose down its concentration gradient into muscle and fat cells. Once within cells, glucose is rapidly phosphorylated by glucokinase in the liver and hexokinase in other tissues to form glucose-6-phosphate, which then enters glycolysis or is polymerized into glycogen ...
The transport of glucose across the proximal tubule cell membrane involves a complex process of secondary active transport (also known as co-transport). [3] This process begins with the Na + /K + ATPase on the basolateral membrane. This enzyme uses ATP to pump 3 sodium ions out of the cell into the blood while bringing 2 potassium ions into the ...