When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Coriolis force - Wikipedia

    en.wikipedia.org/wiki/Coriolis_force

    The definition of the Coriolis effect from the Glossary of Meteorology; The Coriolis Effect — a conflict between common sense and mathematics PDF-file. 20 pages. A general discussion by Anders Persson of various aspects of the coriolis effect, including Foucault's Pendulum and Taylor columns. The coriolis effect in meteorology PDF-file. 5 ...

  3. Westerlies - Wikipedia

    en.wikipedia.org/wiki/Westerlies

    If the Earth were tidally locked to the Sun, solar heating would cause winds across the mid-latitudes to blow in a poleward direction, away from the subtropical ridge. . However, the Coriolis effect caused by the rotation of Earth tends to deflect poleward winds eastward from north (to the right) in the Northern Hemisphere and eastward from south (to the left) in the Southern Hemisph

  4. Ocean gyre - Wikipedia

    en.wikipedia.org/wiki/Ocean_gyre

    In oceanography, a gyre (/ ˈ dʒ aɪ ər /) is any large system of ocean surface currents moving in a circular fashion driven by wind movements. Gyres are caused by the Coriolis effect; planetary vorticity, horizontal friction and vertical friction determine the circulatory patterns from the wind stress curl ().

  5. Physical oceanography - Wikipedia

    en.wikipedia.org/wiki/Physical_oceanography

    A slope of one part in one million in sea surface height, for example, will result in a current of 10 cm/s at mid-latitudes. The fact that the Coriolis effect is largest at the poles and weak at the equator results in sharp, relatively steady western boundary currents which are absent on eastern boundaries. Also see secondary circulation effects.

  6. Ocean current - Wikipedia

    en.wikipedia.org/wiki/Ocean_current

    An ocean current is a continuous, directed movement of seawater generated by a number of forces acting upon the water, including wind, the Coriolis effect, breaking waves, cabbeling, and temperature and salinity differences. [1] Depth contours, shoreline configurations, and interactions with other currents influence a current's direction and ...

  7. Wind - Wikipedia

    en.wikipedia.org/wiki/Wind

    On a rotating planet, air will also be deflected by the Coriolis effect, except exactly on the equator. Globally, the two major driving factors of large-scale wind patterns (the atmospheric circulation ) are the differential heating between the equator and the poles (difference in absorption of solar energy leading to buoyancy forces ) and the ...

  8. Atmospheric circulation - Wikipedia

    en.wikipedia.org/wiki/Atmospheric_circulation

    The descended air then travels toward the equator along the surface, replacing the air that rose from the equatorial zone, closing the loop of the Hadley cell. [3] The poleward movement of the air in the upper part of the troposphere deviates toward the east, caused by the coriolis acceleration. At the ground level, however, the movement of the ...

  9. Geostrophic current - Wikipedia

    en.wikipedia.org/wiki/Geostrophic_current

    A geostrophic current is an oceanic current in which the pressure gradient force is balanced by the Coriolis effect. The direction of geostrophic flow is parallel to the isobars, with the high pressure to the right of the flow in the Northern Hemisphere, and the high pressure to the left in the Southern Hemisphere.