Search results
Results From The WOW.Com Content Network
In fiber-optic communication, an intramodal dispersion, is a category of dispersion that occurs within a single mode optical fiber. [1] This dispersion mechanism is a result of material properties of optical fiber and applies to both single-mode and multi-mode fibers.
Modal dispersion occurs even with an ideal, monochromatic light source. A special case of modal dispersion is polarization mode dispersion (PMD), a fiber dispersion phenomenon usually associated with single-mode fibers. PMD results when two modes that normally travel at the same speed due to fiber core geometric and stress symmetry (for example ...
Interaction energy of an argon dimer.The long-range section is due to London dispersion forces. London dispersion forces (LDF, also known as dispersion forces, London forces, instantaneous dipole–induced dipole forces, fluctuating induced dipole bonds [1] or loosely as van der Waals forces) are a type of intermolecular force acting between atoms and molecules that are normally electrically ...
The source of adhesive forces, according to the dispersive adhesion mechanism, is the weak interactions that occur between molecules close together. [2] These interactions include London dispersion forces, Keesom forces, Debye forces and hydrogen bonds. Individually, these attractions are not very strong, but when summed over the bulk of a ...
The transition between the core and cladding can be sharp, which is called a step-index profile, or a gradual transition, which is called a graded-index profile. The two types have different dispersion characteristics and thus different effective propagation distances. [6] Multi-mode fibers may be constructed with either graded or step-index ...
In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds , these attractions do not result from a chemical electronic bond ; [ 2 ] they are comparatively weak and therefore more susceptible to disturbance.
Dispersion forces keep the molecule inert even while its core Si-Si bond lengthens. Similarly, the longest known Ge-Ge bond is found in t Bu 3 GeGe t Bu 3 and is also facilitated by dispersion stabilization. [19] Dispersion stabilization has also been invoked for (t BuC) 3 P, a main group analog of a hydrocarbon tetrahedrane. [20]
Intramolecular forces such as disulfide bonds give proteins and DNA their structure. Proteins derive their structure from the intramolecular forces that shape them and hold them together. The main source of structure in these molecules is the interaction between the amino acid residues that form the foundation of proteins. [7]