Search results
Results From The WOW.Com Content Network
The differentiator circuit is essentially a high-pass filter. It can generate a square wave from a triangle wave input and produce alternating-direction voltage spikes when a square wave is applied. In ideal cases, a differentiator reverses the effects of an integrator on a waveform, and conversely.
The operational amplifier integrator is an electronic integration circuit. Based on the operational amplifier (op-amp), it performs the mathematical operation of integration with respect to time; that is, its output voltage is proportional to the input voltage integrated over time.
An integrator in measurement and control applications is an element whose output signal is the time integral of its input signal. It accumulates the input quantity over a defined time to produce a representative output. Integration is an important part of many engineering and scientific applications.
which is a differentiator across the resistor. Integration and differentiation can also be achieved by placing resistors and capacitors as appropriate on the input and feedback loop of operational amplifiers (see operational amplifier integrator and operational amplifier differentiator). PWM RC Series Circuit
Amplifies the difference in voltage between its inputs. The name "differential amplifier" must not be confused with the "differentiator", which is also shown on this page. The "instrumentation amplifier", which is also shown on this page, is a modification of the differential amplifier that also provides high input impedance.
The fundamental theorem of calculus states that differentiation and integration are inverse operations. More precisely, it relates the difference quotients to the Riemann sums. It can also be interpreted as a precise statement of the fact that differentiation is the inverse of integration.
This states that differentiation is the reverse process to integration. Differentiation has applications in nearly all quantitative disciplines. In physics, the derivative of the displacement of a moving body with respect to time is the velocity of the body, and the derivative of the velocity with respect to time is acceleration.
The integrator in a Stieltjes integral is represented as the differential of a function. Formally, the differential appearing under the integral behaves exactly as a differential: thus, the integration by substitution and integration by parts formulae for Stieltjes integral correspond, respectively, to the chain rule and product rule for the ...