Ads
related to: examples of bases and their uses in chemistrystudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...
An organic base is an organic compound which acts as a base. Organic bases are usually, but not always, proton acceptors. They usually contain nitrogen atoms, which can easily be protonated. For example, amines or nitrogen-containing heterocyclic compounds have a lone pair of electrons on the nitrogen atom and can thus act as proton acceptors. [1]
strong base used in organic chemistry for the deprotonation of weakly acidic compounds Manganese dioxide: used as a pigment and as a precursor to other manganese compounds; used as a reagent in organic synthesis for the oxidation of allylic alcohols Meta-Chloroperoxybenzoic acid: used as an oxidant in organic synthesis Methyl tert-butyl ether
Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.
2,6-Di-tert-butylpyridine, a weak non-nucleophilic base [2] pK a = 3.58; Phosphazene bases, such as t-Bu-P 4 [3] Non-nucleophilic bases of high strength are usually anions. For these species, the pK a s of the conjugate acids are around 35–40. Lithium diisopropylamide (LDA), pK a = 36
For example, bases donating a lone pair from an oxygen atom are harder than bases donating through a nitrogen atom. Although the classification was never quantified it proved to be very useful in predicting the strength of adduct formation, using the key concepts that hard acid—hard base and soft acid—soft base interactions are stronger ...
An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. [4] The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5]
The terms "base" and "alkali" are often used interchangeably, particularly outside the context of chemistry and chemical engineering. There are various, more specific definitions for the concept of an alkali. Alkalis are usually defined as a subset of the bases. One of two subsets is commonly chosen.