Search results
Results From The WOW.Com Content Network
The relative permittivity (in older texts, dielectric constant) is the permittivity of a material expressed as a ratio with the electric permittivity of a vacuum. A dielectric is an insulating material, and the dielectric constant of an insulator measures the ability of the insulator to store electric energy in an electrical field.
A dielectric resonator oscillator (DRO) is an electronic component that exhibits resonance of the polarisation response for a narrow range of frequencies, generally in the microwave band. It consists of a "puck" of ceramic that has a large dielectric constant and a low dissipation factor. Such resonators are often used to provide a frequency ...
Another common term encountered for both absolute and relative permittivity is the dielectric constant which has been deprecated in physics and engineering [2] as well as in chemistry. [ 3 ] By definition, a perfect vacuum has a relative permittivity of exactly 1 whereas at standard temperature and pressure , air has a relative permittivity of ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
In the semiconductor industry, the term high-κ dielectric refers to a material with a high dielectric constant (κ, kappa), as compared to silicon dioxide.High-κ dielectrics are used in semiconductor manufacturing processes where they are usually used to replace a silicon dioxide gate dielectric or another dielectric layer of a device.
Vacuum permittivity, commonly denoted ε 0 (pronounced "epsilon nought" or "epsilon zero"), is the value of the absolute dielectric permittivity of classical vacuum. It may also be referred to as the permittivity of free space, the electric constant, or the distributed capacitance of the vacuum. It is an ideal (baseline) physical constant.
Dielectric films tend to exhibit greater dielectric strength than thicker samples of the same material. For instance, the dielectric strength of silicon dioxide films of thickness around 1 μm is about 0.5 GV/m. [3] However very thin layers (below, say, 100 nm) become partially conductive because of electron tunneling.
In semiconductor manufacturing, a low-κ is a material with a small relative dielectric constant (κ, kappa) relative to silicon dioxide.Low-κ dielectric material implementation is one of several strategies used to allow continued scaling of microelectronic devices, colloquially referred to as extending Moore's law.