When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Z-test - Wikipedia

    en.wikipedia.org/wiki/Z-test

    The z-test for comparing two proportions is a statistical method used to evaluate whether the proportion of a certain characteristic differs significantly between two independent samples. This test leverages the property that the sample proportions (which is the average of observations coming from a Bernoulli distribution ) are asymptotically ...

  3. Population proportion - Wikipedia

    en.wikipedia.org/wiki/Population_Proportion

    To derive the formula for the one-sample proportion in the Z-interval, a sampling distribution of sample proportions needs to be taken into consideration. The mean of the sampling distribution of sample proportions is usually denoted as μ p ^ = P {\displaystyle \mu _{\hat {p}}=P} and its standard deviation is denoted as: [ 2 ]

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    To determine an appropriate sample size n for estimating proportions, the equation below can be solved, where W represents the desired width of the confidence interval. The resulting sample size formula, is often applied with a conservative estimate of p (e.g., 0.5): = /

  5. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    gives a probability that a statistic is greater than Z. This equates to the area of the distribution above Z. Example: Find Prob(Z ≥ 0.69). Since this is the portion of the area above Z, the proportion that is greater than Z is found by subtracting Z from 1. That is Prob(Z ≥ 0.69) = 1 − Prob(Z ≤ 0.69) or {{{1}}}.

  6. Test statistic - Wikipedia

    en.wikipedia.org/wiki/Test_statistic

    (z is the distance from the mean in relation to the standard deviation of the mean). For non-normal distributions it is possible to calculate a minimum proportion of a population that falls within k standard deviations for any k (see: Chebyshev's inequality). Two-sample z-test

  7. Standard score - Wikipedia

    en.wikipedia.org/wiki/Standard_score

    Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.

  8. Paired difference test - Wikipedia

    en.wikipedia.org/wiki/Paired_difference_test

    The population mean test scores in the four possible groups are and the proportions of students in the groups are where p HA + p HB + p LA + p LB = 1. The "treatment difference" among students in the "high" group is μ HA − μ HB and the treatment difference among students in the "low" group is μ LA − μ LB .

  9. 97.5th percentile point - Wikipedia

    en.wikipedia.org/wiki/97.5th_percentile_point

    There is no single accepted name for this number; it is also commonly referred to as the "standard normal deviate", "normal score" or "Z score" for the 97.5 percentile point, the .975 point, or just its approximate value, 1.96. If X has a standard normal distribution, i.e. X ~ N(0,1),