When.com Web Search

  1. Ads

    related to: how to plan observations in statistics for beginners tutorial free

Search results

  1. Results From The WOW.Com Content Network
  2. Estimation statistics - Wikipedia

    en.wikipedia.org/wiki/Estimation_statistics

    Estimation statistics, or simply estimation, is a data analysis framework that uses a combination of effect sizes, confidence intervals, precision planning, and meta-analysis to plan experiments, analyze data and interpret results. [1]

  3. Unit of observation - Wikipedia

    en.wikipedia.org/wiki/Unit_of_observation

    The unit of observation should not be confused with the unit of analysis.A study may have a differing unit of observation and unit of analysis: for example, in community research, the research design may collect data at the individual level of observation but the level of analysis might be at the neighborhood level, drawing conclusions on neighborhood characteristics from data collected from ...

  4. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample.The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample.

  5. Design of experiments - Wikipedia

    en.wikipedia.org/wiki/Design_of_experiments

    The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]

  6. Realization (probability) - Wikipedia

    en.wikipedia.org/wiki/Realization_(probability)

    In probability and statistics, a realization, observation, or observed value, of a random variable is the value that is actually observed (what actually happened). The random variable itself is the process dictating how the observation comes about.

  7. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]