Search results
Results From The WOW.Com Content Network
In another usage in statistics, normalization refers to the creation of shifted and scaled versions of statistics, where the intention is that these normalized values allow the comparison of corresponding normalized values for different datasets in a way that eliminates the effects of certain gross influences, as in an anomaly time series.
In machine learning, we can handle various types of data, e.g. audio signals and pixel values for image data, and this data can include multiple dimensions. Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance.
Data science is "a concept to unify statistics, data analysis, informatics, and their related methods " to "understand and analyze actual phenomena " with data. [5] It uses techniques and theories drawn from many fields within the context of mathematics, statistics, computer science, information science, and domain knowledge. [6]
Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.
Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives) among the total number of cases examined. [10]
Sample size determination or estimation is the act of choosing the number of observations or replicates to include in a statistical sample. The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined ...
Statistics (from German: Statistik, orig. "description of a state, a country" [1]) is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. [2] In applying statistics to a scientific, industrial, or social problem, it is conventional to begin with a statistical population or a statistical ...
Data quality. Data quality refers to the state of qualitative or quantitative pieces of information. There are many definitions of data quality, but data is generally considered high quality if it is "fit for [its] intended uses in operations, decision making and planning ". [1][2][3] Moreover, data is deemed of high quality if it correctly ...