When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Optional stopping theorem - Wikipedia

    en.wikipedia.org/wiki/Optional_stopping_theorem

    Suppose further that the walk stops if it reaches 0 or m ≥ a; the time at which this first occurs is a stopping time. If it is known that the expected time at which the walk ends is finite (say, from Markov chain theory), the optional stopping theorem predicts that the expected stop position is equal to the initial position a.

  3. Stopping time - Wikipedia

    en.wikipedia.org/wiki/Stopping_time

    Example of a stopping time: a hitting time of Brownian motion.The process starts at 0 and is stopped as soon as it hits 1. In probability theory, in particular in the study of stochastic processes, a stopping time (also Markov time, Markov moment, optional stopping time or optional time [1]) is a specific type of “random time”: a random variable whose value is interpreted as the time at ...

  4. Martingale (probability theory) - Wikipedia

    en.wikipedia.org/wiki/Martingale_(probability...

    The concept of a stopped martingale leads to a series of important theorems, including, for example, the optional stopping theorem which states that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial value.

  5. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    For the simulation generating the realizations, see below. A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. [1]

  6. Semimartingale - Wikipedia

    en.wikipedia.org/wiki/Semimartingale

    The class of semimartingales is closed under optional stopping, localization, change of time and absolutely continuous change of probability measure (see Girsanov's Theorem). If X is an R m valued semimartingale and f is a twice continuously differentiable function from R m to R n, then f(X) is a semimartingale. This is a consequence of Itō's ...

  7. Continuous-time random walk - Wikipedia

    en.wikipedia.org/wiki/Continuous-time_random_walk

    In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times.

  8. Wiener sausage - Wikipedia

    en.wikipedia.org/wiki/Wiener_sausage

    A long, thin Wiener sausage in 3 dimensions A short, fat Wiener sausage in 2 dimensions. In the mathematical field of probability, the Wiener sausage is a neighborhood of the trace of a Brownian motion up to a time t, given by taking all points within a fixed distance of Brownian motion.

  9. Reflection principle (Wiener process) - Wikipedia

    en.wikipedia.org/wiki/Reflection_principle...

    The earliest stopping time for reaching crossing point a, := {: =}, is an almost surely bounded stopping time. Then we can apply the strong Markov property to deduce that a relative path subsequent to τ a {\displaystyle \tau _{a}} , given by X t := W ( t + τ a ) − a {\displaystyle X_{t}:=W(t+\tau _{a})-a} , is also simple Brownian motion ...