When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Fierz identity - Wikipedia

    en.wikipedia.org/wiki/Fierz_identity

    The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.

  4. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  5. Grassmann number - Wikipedia

    en.wikipedia.org/wiki/Grassmann_number

    The ladder operators for fermions create field quanta that must necessarily have anti-symmetric wave functions, as this is forced by the Pauli exclusion principle. In this situation, a Grassmann number corresponds immediately and directly to a wave function that contains some (typically indeterminate) number of fermions.

  6. List of quantum logic gates - Wikipedia

    en.wikipedia.org/wiki/List_of_quantum_logic_gates

    As Pauli matrices are related to the generator of rotations, these rotation operators can be written as matrix exponentials with Pauli matrices in the argument. Any 2 × 2 {\displaystyle 2\times 2} unitary matrix in SU(2) can be written as a product (i.e. series circuit) of three rotation gates or less.

  7. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    The th column of an identity matrix is the unit vector, a vector whose th entry is 1 and 0 elsewhere. The determinant of the identity matrix is 1, and its trace is . The identity matrix is the only idempotent matrix with non-zero determinant. That is, it is the only matrix such that:

  8. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    A matrix will preserve or reverse orientation according to whether the determinant of the matrix is positive or negative. For an orthogonal matrix R, note that det R T = det R implies (det R) 2 = 1, so that det R = ±1. The subgroup of orthogonal matrices with determinant +1 is called the special orthogonal group, denoted SO(3).

  9. Quaternion group - Wikipedia

    en.wikipedia.org/wiki/Quaternion_group

    2-dimensional representation: Described below in Matrix representations. It is not realizable over the real numbers , but is a complex representation: indeed, it is just the quaternions H {\displaystyle \mathbb {H} } considered as an algebra over C {\displaystyle \mathbb {C} } , and the action is that of left multiplication by Q 8 ⊂ H ...