Ads
related to: responsible for synthesising making proteins- Sign In
Sigma® Life Science
View contract pricing, get quotes
- Product Directory
Browse Through the Product catagory
Find the right product
- Lab Products & Equipment
Shop our huge portfolio of labware
equipment from leading brands.
- Sigma® Life Science
Cell culture, antibodies
and more biological products
- Sign In
origene.com has been visited by 10K+ users in the past month
Search results
Results From The WOW.Com Content Network
Protein biosynthesis (or protein synthesis) is a core biological process, occurring inside cells, balancing the loss of cellular proteins (via degradation or export) through the production of new proteins. Proteins perform a number of critical functions as enzymes, structural proteins or hormones.
A particular biosynthetic pathway may be located within a single cellular organelle (e.g., mitochondrial fatty acid synthesis pathways), while others involve enzymes that are located across an array of cellular organelles and structures (e.g., the biosynthesis of glycosylated cell surface proteins).
Often many subunits will combine to make a fully functional protein although physiological proteins do exist that contain only one polypeptide chain. Proteins may also incorporate other molecules such as the heme group in hemoglobin, a protein responsible for carrying oxygen in the blood. [19]
Naturally occurring or biological molecular machines are responsible for vital living processes such as DNA replication and ATP synthesis. Kinesins and ribosomes are examples of molecular machines, and they often take the form of multi-protein complexes. For the last several decades, scientists have attempted, with varying degrees of success ...
Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene .
Cell-free protein synthesis, also known as in vitro protein synthesis or CFPS, is the production of protein using biological machinery in a cell-free system, that is, without the use of living cells. The in vitro protein synthesis environment is not constrained by a cell wall or homeostasis conditions necessary to maintain cell viability. [ 1 ]
Ribosomes are the macromolecular machines that are responsible for mRNA translation into proteins. The eukaryotic ribosome, also called the 80S ribosome, is made up of two subunits – the large 60S subunit (which contains the 25S [in plants] or 28S [in mammals], 5.8S, and 5S rRNA and 46 ribosomal proteins) and a small 40S subunit (which contains the 18S rRNA and 33 ribosomal proteins). [6]
The F 1 portion of ATP synthase is hydrophilic and responsible for hydrolyzing ATP. The F 1 unit protrudes into the mitochondrial matrix space. Subunits α and β make a hexamer with 6 binding sites. Three of them are catalytically inactive and they bind ADP. Three other subunits catalyze the ATP synthesis.