Search results
Results From The WOW.Com Content Network
As the grain is bent further, more and more dislocations must be introduced to accommodate the deformation resulting in a growing wall of dislocations – a low-angle boundary. The grain can now be considered to have split into two sub-grains of related crystallography but notably different orientations.
Subgrains are defined as grains that are oriented at a < 10–15 degree angle at the grain boundary, making it a low-angle grain boundary (LAGB). Due to the relationship between the energy versus the number of dislocations at the grain boundary, there is a driving force for fewer high-angle grain boundaries (HAGB) to form and grow instead of a ...
Figure 1: Hall–Petch strengthening is limited by the size of dislocations. Once the grain size reaches about 10 nanometres (3.9 × 10 −7 in), grain boundaries start to slide. In materials science, grain-boundary strengthening (or Hall–Petch strengthening) is a method of strengthening materials by changing their average crystallite (grain
The main problem with this theory is that the stored energy due to dislocations is very low (0.1–1 J m −3) while the energy of a grain boundary is quite high (~0.5 J m −3). Calculations based on these values found that the observed nucleation rate was greater than the calculated one by some impossibly large factor (~10 50 ).
As recovery proceeds these cell walls will undergo a transition towards a genuine subgrain structure. This occurs through a gradual elimination of extraneous dislocations and the rearrangement of the remaining dislocations into low-angle grain boundaries. Sub-grain formation is followed by subgrain coarsening where the average size increases ...
Once critical dislocation density is achieved, nucleation occurs on grain boundaries. Grain boundary migration, or the atoms transfer from a large pre-existing grain to a smaller nucleus, allows the growth of the new nuclei at the expense of the pre-existing grains. [3] The nucleation can occur through the bulging of existing grain boundaries.
Two main mechanisms for altering grain boundaries have been defined. The first is the process by which quartz softens as temperature increases, providing a means for internal stress reduction by migration of dislocations in the crystal lattice, known as dislocation creep. These dislocations concentrate into walls, forming new grain boundaries.
Such deformation increases the concentration of dislocations which may subsequently form low-angle grain boundaries surrounding sub-grains. Cold working generally results in a higher yield strength as a result of the increased number of dislocations and the Hall–Petch effect of the sub-grains, and a decrease in ductility.