When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ward's method - Wikipedia

    en.wikipedia.org/wiki/Ward's_method

    In statistics, Ward's method is a criterion applied in hierarchical cluster analysis. Ward's minimum variance method is a special case of the objective function approach originally presented by Joe H. Ward, Jr. [1] Ward suggested a general agglomerative hierarchical clustering procedure, where the criterion for choosing the pair of clusters to ...

  3. Hierarchical clustering - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_clustering

    The standard algorithm for hierarchical agglomerative clustering (HAC) has a time complexity of () and requires () memory, which makes it too slow for even medium data sets. . However, for some special cases, optimal efficient agglomerative methods (of complexity ()) are known: SLINK [2] for single-linkage and CLINK [3] for complete-linkage clusteri

  4. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Cluster analysis or clustering is the task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some specific sense defined by the analyst) to each other than to those in other groups (clusters). It is a main task of exploratory data analysis, and a common technique for statistical ...

  5. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    Determining the number of clusters in a data set, a quantity often labelled k as in the k -means algorithm, is a frequent problem in data clustering, and is a distinct issue from the process of actually solving the clustering problem. For a certain class of clustering algorithms (in particular k -means, k -medoids and expectation–maximization ...

  6. Dendrogram - Wikipedia

    en.wikipedia.org/wiki/Dendrogram

    For a clustering example, suppose that five taxa (to ) have been clustered by UPGMA based on a matrix of genetic distances.The hierarchical clustering dendrogram would show a column of five nodes representing the initial data (here individual taxa), and the remaining nodes represent the clusters to which the data belong, with the arrows representing the distance (dissimilarity).

  7. UPGMA - Wikipedia

    en.wikipedia.org/wiki/UPGMA

    The UPGMA algorithm constructs a rooted tree (dendrogram) that reflects the structure present in a pairwise similarity matrix (or a dissimilarity matrix). At each step, the nearest two clusters are combined into a higher-level cluster. The distance between any two clusters and , each of size (i.e., cardinality) and , is taken to be the average ...

  8. WPGMA - Wikipedia

    en.wikipedia.org/wiki/WPGMA

    WPGMA (W eighted P air G roup M ethod with A rithmetic Mean) is a simple agglomerative (bottom-up) hierarchical clustering method, generally attributed to Sokal and Michener. [1] The WPGMA method is similar to its unweighted variant, the UPGMA method.

  9. Nearest-neighbor chain algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest-neighbor_chain...

    In the theory of cluster analysis, the nearest-neighbor chain algorithm is an algorithm that can speed up several methods for agglomerative hierarchical clustering.These are methods that take a collection of points as input, and create a hierarchy of clusters of points by repeatedly merging pairs of smaller clusters to form larger clusters.