Ad
related to: lcm and hcf formula tricks and problems answer page 7 pdf file- Exam Prep
Test prep, simplified
Personalized study recommendations
- Rent Textbooks
Save up to 90% on textbooks.
or buy and get 7-day instant access
- Plagiarism Checker
It's your writing, make sure of it
Check for plagiarism mistakes.
- Chegg Writing®
Online Plagiarism Checker
Check Your Paper for Free
- Chegg® Study & DoorDash®
DoorDash® Free Delivery with Chegg®
Good Eat & Study tools go together!
- Chegg® Study Pack
More Tools, Better Grades
Study Help for Your Classes
- Exam Prep
Search results
Results From The WOW.Com Content Network
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
The lowest common denominator of a set of fractions is the lowest number that is a multiple of all the denominators: their lowest common multiple.The product of the denominators is always a common denominator, as in:
Equivalently, g(n) is the largest least common multiple (lcm) of any partition of n, or the maximum number of times a permutation of n elements can be recursively applied to itself before it returns to its starting sequence. For instance, 5 = 2 + 3 and lcm(2,3) = 6. No other partition of 5 yields a bigger lcm, so g(5) = 6.
The general formula is X k + 1 = a ⋅ X k mod m , {\displaystyle X_{k+1}=a\cdot X_{k}{\bmod {m}},} where the modulus m is a prime number or a power of a prime number , the multiplier a is an element of high multiplicative order modulo m (e.g., a primitive root modulo n ), and the seed X 0 is coprime to m .
Two modulo-9 LCGs show how different parameters lead to different cycle lengths. Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6.
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
The greatest common divisor (GCD) of integers a and b, at least one of which is nonzero, is the greatest positive integer d such that d is a divisor of both a and b; that is, there are integers e and f such that a = de and b = df, and d is the largest such integer.
Second example: 87 x 11 = 957 because 8 + 7 = 15 so the 5 goes in between the 8 and the 7 and the 1 is carried to the 8. So it is basically 857 + 100 = 957. Or if 43 x 11 is equal to first 4+3=7 (For the tens digit) Then 4 is for the hundreds and 3 is for the tens. And the answer is 473.