When.com Web Search

  1. Ad

    related to: proving statements in geometry meaning similar angles theorem examples with solutions

Search results

  1. Results From The WOW.Com Content Network
  2. AA postulate - Wikipedia

    en.wikipedia.org/wiki/AA_postulate

    In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...

  3. Similarity (geometry) - Wikipedia

    en.wikipedia.org/wiki/Similarity_(geometry)

    Similar triangles provide the basis for many synthetic (without the use of coordinates) proofs in Euclidean geometry. Among the elementary results that can be proved this way are: the angle bisector theorem , the geometric mean theorem , Ceva's theorem , Menelaus's theorem and the Pythagorean theorem .

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Descartes's theorem (plane geometry) Dinostratus' theorem (geometry, analysis) Equal incircles theorem (Euclidean geometry) Euler's quadrilateral theorem ; Euler's theorem in geometry (triangle geometry) Exterior angle theorem (triangle geometry) Feuerbach's theorem ; Finsler–Hadwiger theorem ; Five circles theorem

  6. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate. The postulate was long considered to be obvious or inevitable, but proofs were elusive.

  7. Hinge theorem - Wikipedia

    en.wikipedia.org/wiki/Hinge_theorem

    The hinge theorem holds in Euclidean spaces and more generally in simply connected non-positively curved space forms.. It can be also extended from plane Euclidean geometry to higher dimension Euclidean spaces (e.g., to tetrahedra and more generally to simplices), as has been done for orthocentric tetrahedra (i.e., tetrahedra in which altitudes are concurrent) [2] and more generally for ...

  8. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...

  9. Steiner–Lehmus theorem - Wikipedia

    en.wikipedia.org/wiki/Steiner–Lehmus_theorem

    The Steiner–Lehmus theorem, a theorem in elementary geometry, was formulated by C. L. Lehmus and subsequently proved by Jakob Steiner. It states: Every triangle with two angle bisectors of equal lengths is isosceles. The theorem was first mentioned in 1840 in a letter by C. L. Lehmus to C. Sturm, in which he asked for a purely geometric proof ...

  1. Related searches proving statements in geometry meaning similar angles theorem examples with solutions

    similarities in geometry prooflist of theorems
    similarities and similar angles