Search results
Results From The WOW.Com Content Network
Hyperbolic space, developed independently by Nikolai Lobachevsky, János Bolyai and Carl Friedrich Gauss, is a geometric space analogous to Euclidean space, but such that Euclid's parallel postulate is no longer assumed to hold. Instead, the parallel postulate is replaced by the following alternative (in two dimensions):
She decided to make more durable models, and did so by crocheting them. [4] The first night after first seeing the paper model at the workshop she began experimenting with algorithms for a crocheting pattern, after visualising hyperbolic planes as exponential growth. The following fall, Taimiņa was scheduled to teach a geometry class at Cornell.
However, the entire hyperbolic plane cannot be embedded into Euclidean space in this way, and various other models are more convenient for abstractly exploring hyperbolic geometry. There are four models commonly used for hyperbolic geometry: the Klein model , the Poincaré disk model , the Poincaré half-plane model , and the Lorentz or ...
In geometry, the hyperboloid model, also known as the Minkowski model after Hermann Minkowski, is a model of n-dimensional hyperbolic geometry in which points are represented by points on the forward sheet S + of a two-sheeted hyperboloid in (n+1)-dimensional Minkowski space or by the displacement vectors from the origin to those points, and m ...
The metric of the model on the half-plane, { , >}, is: = + ()where s measures the length along a (possibly curved) line. The straight lines in the hyperbolic plane (geodesics for this metric tensor, i.e., curves which minimize the distance) are represented in this model by circular arcs perpendicular to the x-axis (half-circles whose centers are on the x-axis) and straight vertical rays ...
A Picard horn, also called the Picard topology or Picard model, is one of the oldest known hyperbolic 3-manifolds, first described by Émile Picard [1] in 1884. [2] The manifold is the quotient of the upper half-plane model of hyperbolic 3-space by the projective special linear group , PSL 2 ( Z [ i ] ) {\displaystyle \operatorname {PSL ...
A horosphere within the Poincaré disk model tangent to the edges of a hexagonal tiling cell of a hexagonal tiling honeycomb Apollonian sphere packing can be seen as showing horospheres that are tangent to an outer sphere of a Poincaré disk model. In hyperbolic geometry, a horosphere (or parasphere) is a specific hypersurface in hyperbolic n ...
In mathematics, hyperbolic complex space is a Hermitian manifold which is the equivalent of the real hyperbolic space in the context of complex manifolds. The complex hyperbolic space is a Kähler manifold , and it is characterised by being the only simply connected Kähler manifold whose holomorphic sectional curvature is constant equal to -1.